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ABSTRACT
Design patterns have proven useful in many creative fields,
providing content creators with archetypal, reusable guide-
lines to leverage in projects. Creating such patterns, however,
is a time-consuming, manual process, typically relegated to a
few experts in any given domain. In this paper, we describe an
algorithmic method for learning design patterns directly from
data using techniques from natural language processing and
structured concept learning. Given a set of labeled, hierarchi-
cal designs as input, we induce a probabilistic formal gram-
mar over these exemplars. Once learned, this grammar en-
codes a set of generative rules for the class of designs, which
can be sampled to synthesize novel artifacts. We demonstrate
the method on geometric models and Web pages, and discuss
how the learned patterns can drive new interaction mecha-
nisms for content creators.

ACM Classification Keywords
H.1.2. [Models and Principles]: User/Machine Systems –
Human factors.

General Terms
Algorithms, Human Factors.

Author Keywords
Design patterns; grammar induction.

INTRODUCTION
As creative fields mature, a set of best practices emerge for
design. Often, attempts are made to codify these practices
into a set of formal rules for designers which set out principles
of composition, describe useful idioms, and summarize com-
mon aesthetic sensibilities. Such design patterns have proven
popular and influential in fields such as architecture [3], soft-
ware engineering [14], interaction [7], and Web design [13].

Despite their popularity, design patterns are also problematic.
For one, they are difficult to operationalize: users bear the
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burden of locating reputable sources of design knowledge, as-
similating that knowledge, and applying it to their own prob-
lems. For another, patterns must be painstakingly formulated
and compiled by experts, resulting in guidelines that may be
less descriptive of actual practice than prescriptive of a par-
ticular designer’s point of view.

A more attractive proposition is to learn design patterns di-
rectly from data, and encapsulate them in a representation that
can be accessed algorithmically. In this paper, we address this
problem for one common class of designs: those comprising
a hierarchy of labeled components. Such hierarchies abound
in creative domains as diverse as architecture [39], geometric
modeling [35], document layout [21], and Web design [25].

To learn patterns in a principled way, we leverage techniques
from natural language processing and structured concept
learning. In particular, we cast the problem as grammar
induction: given a corpus of example designs, we induce
a probabilistic formal grammar over the exemplars. Once
learned, this grammar gives a design pattern in a human-
readable form that can be used to synthesize novel designs
and verify extant constructions.

The crux of this induction is learning how to generalize be-
yond the set of exemplars: we would like to distill general
principles from the provided designs without extrapolating
patterns that are not supported by the data. To this end,
we employ an iterative structure learning technique called
Bayesian Model Merging [41], which formulates grammar
induction as Bayesian inference. The method employs an in-
ductive bias based on the law of succinctness, also known as
Occam’s razor, searching for the simplest grammar that best
fits the examples. Since compactness and generality are inex-
orably linked in grammar-based models, the method provides
a data-driven way to learn design patterns that are neither too
specific nor overly general.

We demonstrate the method on two distinct classes of de-
signs: geometric models (based on scene graphs), and Web
pages (based on Document Object Model trees). We report
on statistical analyses of the grammars induced by our tech-
nique, share the results from a small user study, and discuss
how these sorts of probabilistic models could lead to better
tools and interaction mechanisms for design.
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Figure 1. The pipeline for learning design patterns with grammar induction. A set of example designs, each comprising a hierarchy of labeled

components, are used to produce an initial, specific grammar. Then, Markov chain Monte Carlo optimization is employed to explore a space of

more general grammars, balancing the descriptive power of each one against its representation complexity. At the end of this process, the best

scoring grammar is returned, and can be sampled to generate new designs.

BACKGROUND
The use of grammars as generative models has a long history
in design. Grammar-based procedural models have seen ex-
tensive use in architecture [39, 8, 12], product design [24, 1,
34], document layout [9, 44], and 3D modeling [33, 31, 29].
However, despite the proven utility of grammars as a com-
putational mechanism for design, the overwhelming majority
of these models are coded painstakingly by hand. Although
a few attempts have been made to learn deterministic rules
from patterns [38] and adapt texture synthesis techniques to
geometric modeling [28, 6], relatively little work has been
done on learning grammars from designs in a principled way.

In formal language theory, the problem of grammar induc-
tion was first introduced by Solomonoff [37], who posed the
fundamental question of language learning: given a sequence
of words from a formal language, is it possible to learn an
automaton capable of recognizing that language? The clas-
sical result, due to Gold [15], is negative, and states that no
superfinite language class is learnable in the limit from posi-
tive examples. This means that none of the languages in the
Chomsky hierarchy—regular, context-free, context-sensitive,
or recursively enumerable—can be learned in this way, re-
gardless of how many samples from the language the induc-
tion algorithm is allowed to inspect, or how long it is allowed
to process them.

Horning [19] showed that things are not quite so grim for
probabilistic languages: in fact, stochastic context-free gram-
mars can—in theory—be induced from positive examples.
Learning these grammars in practice, however, is a challeng-
ing problem: even deciding whether or not there exists an n-
state automaton which agrees with some finite set of data is
known to be NP-complete [16]. Accordingly, no general al-
gorithm for learning stochastic context-free grammars in the
limit has been proposed [10], although several authors have
demonstrated natural language induction from large corpora
by leveraging domain-specific linguistic features [22, 23].

One popular strategy for making the grammar induction prob-
lem tractable is the introduction of an inductive bias. In
this paper, we use a technique called Bayesian Model Merg-
ing [41] which employs an inductive bias based on the cog-
nitive principle of Occam’s razor: specific, complex models

are deemed less likely than simple, general ones [26]. In par-
ticular, we formulate a posterior probability distribution over
the space of possible grammars, and then attempt to maxi-
mize this posterior via Markov chain Monte Carlo (MCMC)
optimization. This gives a principled, flexible method for in-
ducing design patterns from data.

ALGORITHM OVERVIEW
The method takes as input a set of designs in the form of
labeled trees, where each label is drawn from a discrete dic-
tionary C. The algorithm begins by traversing each tree and
creating a production rule for every node to generate a least-
general conforming grammar (LGCG). The grammar is con-
forming in the sense that every exemplar is a valid derivation
from it; it is the least-general such grammar because it derives
only the exemplars, with no additional generalization capac-
ity.

Once this grammar is constructed, Markov chain Monte
Carlo optimization is used to explore a series of more general
conforming grammars by merging and splitting nonterminal
symbols. Each merge operation takes two nonterminals,
rewrites them to have a common name, and unions their
productions; each split operation is the reverse of a merge.

To judge the quality of each candidate grammar, we adopt a
Bayesian interpretation that balances the likelihood of the ex-
emplar designs against the description length of the grammar.
At each step in the optimization, we randomly select a split or
merge move to apply, and evaluate the posterior of the resul-
tant grammar. This search procedure is run until it exhausts
a predetermined computational budget and the maximum a
posteriori estimate is returned. This process is outlined in
Figure 1.

GRAMMAR FORMULATION
In order to describe the grammar induction framework, we
must first define some basic concepts. A stochastic, context-
free grammar (SCFG) is a tuple

G = hV, T,!, R, ✓i,

where V is the set of nonterminals, T is the set of terminals,
! 2 (V [ T )+ is the axiom, R ⇢ V ⇥ (V [ T )+ is a finite
set of production rules, and ✓ : R ! (0, 1] is a probability



function. Each production ⇢ 2 R is written as A ! �, where
A 2 V is called the predecessor, and � 2 (V [ T )+ is called
the successor. For any A 2 V , the sum of the probabilities
for all the rules in R with predecessor A is 1. In the context
of structure learning, the set SG = hV, T,!, Ri is called the
grammar’s structure, and ✓G is said to comprise its parame-
ters.

The set L(G) of all strings which the grammar can gener-
ate is called the language of G. Given a string m 2 L(G),
there is at least one derivation tree ⌧ for m. Each such tree
is rooted on !, and every subsequent level in ⌧ consists of
a string produced by applying a matching production to each
nonterminals in the level above. The last level of the tree con-
tains m.

BAYESIAN INFERENCE FOR GRAMMARS
Given a set of example designs M, we formulate a posterior
probability distribution over the space of possible grammars

p(G|M) / P (M|G)⇡(G) (?)

where P (M|G) is the likelihood of the set of example de-
signs given the grammar and ⇡(G) is the grammar prior.
Finding the optimal grammar for the exemplars then reduces
to maximizing this posterior.

From a strict Bayesian perspective we should formulate this
inference as a search for the optimal grammar structure, inte-
grating over the associated parameters to compute

P (M|SG) =

Z

✓G

P (✓G|SG)P (M|SG, ✓G)d✓G. (⇧)

Since this integral has no analytic solution, it would have to
be approximated numerically via a costly Monte Carlo sim-
ulation for each candidate grammar structure, making infer-
ence intractable. Instead, we make a Viterbi assumption that
the maximum likelihood parameters for any given structure
will dominate in (⇧), which simplifies the inference procedure
by identifying a unique set of parameters with each candidate
grammar.

Design Likelihoods
With this assumption, given a grammar G comprising struc-
ture SG and parameters ✓G, we can calculate the likelihood
of the exemplar set under the grammar

P (M|G) =

Y

m2M

PG(m),

where PG(·) is the probability of deriving a design. The prob-
ability of a model m is the sum over all possible derivation
trees yielding m,

PG(m) =

X

⌧)m

P (⌧) =
X

⌧)m

Y

⇢2⌧

✓G(⇢),

where the probability of a tree is just the product of the prob-
abilities of the rules used in its derivation.

Grammar Priors
To calculate the second term in the posterior (?), the grammar
prior, we decompose the grammar into structure and parame-
ters, and apply the chain rule to write

⇡(G) = PG(✓G|SG)⇡G(SG),

where PG(·|·) is the probability of the grammar’s parameters
given its structure, and ⇡G(·) is a structure prior.

To compute the probability of the grammar’s parameters, we
examine each nonterminal v 2 VG and observe that the sub-
set of parameters ✓v ✓ ✓G associated with it form a multino-
mial. Then, we write the probability as a product of Dirichlet
distributions

PG(✓G|SG) =

Y

v2VG

PG(✓
v
) =

Y

v2VG

1

B(↵)

Y

⇢2R|v

�
✓v⇢

�↵�1
,

where B(·) is the multinomial beta function, and ↵ is a con-
centration parameter. By setting ↵ = 1, we obtain a uniform
distribution over all possible production probabilities; when
↵ < 1 we prefer grammars in which most of the probability
mass is concentrated in a few productions; when ↵ > 1 we
give preference to distributions in which all of the probabili-
ties are equal.

To compute the prior probability of the grammar structure,
we take

⇡G(SG) = exp [�`(SG)]

� ,

where `(·) is an approximation of the description length of
the grammar and � is a weighting term. We encode the gram-
mar as a string of productions separated by a special termi-
nation character, starting with the axiom and continuing with
the predecessor and successor of the remaining rules. Each
symbol in the string then contributes log2(|V | + |T |) bits to
the length. Since our formulation measures model complexity
syntactically and fit to data semantically, we use � to adjust
the balance between these two intrinsically incommensurable
quantities.

MODEL MERGING
With this formulation, we use Markov chain Monte Carlo op-
timization to seek a grammar that maximizes the posterior.
The key idea behind this optimization is that we can explore
a family of related, conforming grammars by merging and
splitting nonterminal symbols. While the original Bayesian
Model Merging algorithm used only merge operations in a
beam search, we employ both merges and splits in a full
MCMC framework to prevent the search procedure from get-
ting “stuck” in local maxima.

Initial Grammar Creation
The algorithm begins by processing the exemplars to cre-
ate a least-general conforming grammar, which is used to
initialize the optimization. To produce this grammar, one
nonterminal symbol is created for each instanced label used
in M, and a counter i is initialized. Then, each hierarchi-
cal design is traversed recursively. As each label g with
children c1, . . . , ck is encountered, the traversal generates a
new production Ai ! gAi+1 . . . Ai+k, pushes productions



GoalMost-specific Most-general

Bayes-optimal patterns and modelsSearch through merging

# Merged and new patterns

1 F16(F12 + F15) :
[� F8 ] [� F8 ]

��

[� F10 ] [� F8 ]
2 F17(F8 + F10) :

�� [� F9 ]

3 F18(F2 + F7) :
[� F0 ] [� F0 ]

��

[� F0 ] [� F6 ]
4 F19(F0 + F6) :

�� [� F5 ]

5 F20(F18 + F16) :
[� F19 ] [� F19 ]

��

[� F17 ] [� F17 ]

Initial pattern (from exemplars):

P (G|M) : �75.75 L (M|G) : �5.54

Start : F30

F30 : [� F28 ] [� F28 ]
��

[� F26 ] [� F26 ]
��

[� F28 ]
�� [� F26 ]

F28 :
�� [� F30 ]

F26 :
�� [� F30 ]

P (G|M) : �60.14 L (M|G) : �15.24

Start : F15 |F12 |F7 |F2

F0 :

F2 : [� F0 ] [� F0 ]

F5 : [� F0 ] , F6 : [� F5 ]

F7 : [� F0 ] [� F6 ]

F8 : , F9 : [� F8 ]

F10 : [� F9 ]

F12 : [� F10 ] [� F8 ]

F15 : [� F8 ] [� F8 ]

Exemplars: New models from merge # 2:

New models from merge # 4:

F12

F7

F2

F15

Most-general patterns and models

Start : F20

F20 : [� F19 ] [� F19 ]
��

[� F17 ] [� F17 ]

F19 :
�� [� F5 ]

F17 :
�� [� F9 ]

F5 : [� F19 ]

F9 : [� F17 ]

P (G|M) : �56.21 L (M|G) : �8.21

Figure 2. The grammar induction pipeline applied to a simple design space of blocks in a pattern. (left) The initial exemplars and the least-general

conforming grammar generated from them. (mid left) The set of merges used to collapse the grammar. (mid right) The optimal grammar, and a set

of random samples drawn from it. (right) The most-general conforming grammar, and a set of random samples drawn from it. The design pattern

learned with our method generalizes beyond the exemplars in a reasonable way.

Ai+1 ! . . . through Ai+k ! . . . onto the stack, and in-
crements i by k + 1. At the end of this process, the starting
nonterminals for each of the distinct designs are set as succes-
sors of the axiom S. The resultant grammar generates input
example m with probability 1/|M|.

Merging and Splitting
From the LGCG, the method explores a space of more gen-
eral grammars by merging and splitting nonterminal symbols.
Each merging operation adds to the grammar’s generalization
capacity and decreases its description length. With succes-
sive merges, the cardinality of L(G) increases: accordingly,
each merging operation can only decrease the likelihood of
the examples. Occasionally, a merge will create a loop in the
grammar structure, making the resultant language superfinite.

Each merge operation takes two nonterminals Ai, Aj 2 V
and their productions

Ai ! �1 | . . . | �k and Aj !  1 | . . . |  l,

and collapses them to a single, new nonterminal Aij whose
successors are the union of the productions of the original
symbols

Aij ! �1 | . . . | �k |  1 | . . . |  l.

A split operation is the reverse of a merge: it takes a single
nonterminal Ai and randomly splits its productions between
two new nonterminals Ai1 and Ai2. Then, every instance of
Ai in the grammar is replaced by one of these new nontermi-
nals selected at random.

Type Restrictions
In general language learning applications, any two nontermi-
nal symbols can be merged. In particular design domains,
however, the semantics of the symbols can be used to re-
strict the set of potential merge operations and reduce the
size of the search space. Since every merge operation rep-
resents a determination by the learning algorithm that two
symbols can be used interchangeably and identically, we can
improve performance by identifying symbols that are funda-
mentally incomparable a priori. In essence, we impose a type
system for nonterminals, and only consider merges amongst
type-compatible symbols. This type system comprises a dis-
crete set of types T , and an assignment for each variable
t : V ! T .

Parameter Estimation
While each merge or split operation defines a new grammar
structure, to evaluate the posterior we must also have corre-
sponding parameters. In particular, given a grammar structure
SG, we wish to find maximum likelihood values for ✓G such
that

✓G = argmax

✓
P (M|SG, ✓).

This problem is solved using expectation maximization via
the Inside-Outside algorithm [5], a generalization of the
classical Baum-Welch algorithm for hidden Markov models.
Given a current estimate for the probabilities ✓, we update



Domain |M| |C| �
Least-General Most-General Bayes-Optimal

DL L DL L p200 DL L p200

Spaceship 5 51 1.15 402 3.2 ⇥ 10

�4 369 1.0 ⇥ 10

�27 .34 389 1.9 ⇥ 10

�11 .85
Castle 6 37 1.05 739 2.1 ⇥ 10

�5 662 1.1 ⇥ 10

�88 .0045 718 6.9 ⇥ 10

�18 .92
Seussean 9 29 1.2 376 2.6 ⇥ 10

�9 341 4.2 ⇥ 10

�32 .62 346 1.2 ⇥ 10

�27 .77
Sakura 8 19 1.2 463 6.0 ⇥ 10

�8 406 6.5 ⇥ 10

�73
1.3 ⇥ 10

�7 433 3.0 ⇥ 10

�29 .14
Web page 30 30 1.0 733 4.9 ⇥ 10

�45 67 1 ⇥ 10

�1546 - 602 8.8 ⇥ 10

�101 .37

Table 1. For each of the example domains, the number of exemplars; the number of components; the parameter from the grammar prior; the

description length; and the likelihood for the least-general, most-general, and Bayes-optimal grammars. For these latter two grammars, we also

report the probability mass occupied by the two-hundred highest-probability designs as a measure of the grammar’s generalization capacity.

the probability of a rule A ! � by

ˆ✓(A ! �) =

P
m2M c✓(A ! �;m)P

m2M

P
� c✓(A ! �;m)

,

where c✓(·; ·) is the expected count of the number of times
that a particular rule is used in the derivation of a given model.
Since each c✓(·; ·) depends on the current value of ✓, the algo-
rithm is iterative: we initialize the probabilities to be uniform
for all rules associated with a given nonterminal, and then
update and recompute the counts until ✓ converges.

Parsing
To compute the expected count of the number of times a par-
ticular rule is used, we must find derivation trees for each of
the designs in M. In linguistic theory, this process is known
as parsing. Because the number of possible derivations for
any particular design can be exponential in the size of the tree,
we cannot enumerate these derivations and count the number
of occurrences of each rule. Instead, we employ a bottom-
up, chart-based parser similar to the CYK algorithm [2], but
adapted for labeled trees instead of strings. Once constructed,
the chart can be used to efficiently compute both the the to-
tal probability of deriving a model PG(·) and the expected
count of a rule in a derivation c✓(·; ·) via dynamic program-
ming [27].

Markov chain Monte Carlo
With this machinery in place, the Bayes-optimal grammar
can be sought via Markov chain Monte Carlo search using
the Metropolis-Hastings algorithm [4]. The state space is a
graph where every node is a grammar, and adjacencies be-
tween nodes represent merging and splitting operations. The
score of each node is the posterior probability (?), and the
starting node is the LGCG.

At the ith iteration of the optimization, a split or merge move
is chosen at random in the current grammar G, and a new
grammar G0 is generated. This new grammar is then accepted
as the current search state with probability

↵(G0|G) = min

✓
1,

p1/Ti
(G0|M)q(G|G0

)

p1/Ti
(G|M)q(G0|G)

◆
,

where q(·|·) is the probability of splitting or merging one
grammar to generate the other and Ti is a decreasing cool-
ing schedule with limi!1 Ti = 0. After the algorithm has
been run for a fixed number of iterations, the grammar with
the highest posterior is returned.

To calculate q(G0|G), consider a split move where nonter-
minal Ai is broken into two new nonterminals Aj and Ak.
First, Ai is selected uniformly from amongst the |VG| nonter-
minals. Then, each of the |RAi | productions that have Ai as
their predecessor are assigned randomly to Aj or Ak. Finally,
each of the f instances of Ai in the grammar are randomly
replaced by one of Aj or Ak. In this case, the reverse dis-
tribution q(G|G0

) measures the probability of selecting Aj

and Ak from the set of |VG0 | nonterminals to merge. In the
absence of type restrictions, this gives

q(G0|G) =

1

|VG|2|RAi |+f
, q(G|G0

) =

2

|VG0 | (|VG0 | � 1)

.

EVALUATION
To test our framework for inducing design patterns, we exper-
imented with two distinct classes of hierarchical, labeled de-
signs: Web pages constructed from Document Object Model
(DOM) trees, and geometric models constructed from scene
graphs.

Web Pages
We built a corpus of thirty Web pages, harvested from de-
sign blogs and popular business sites. We used the Bento
page segmentation algorithm [25] to decompose each page
into a visual information hierarchy bootstrapped by the DOM.
Then, we assigned each element in the hierarchy one of thirty
distinct labels describing its semantic properties. These la-
bels were chosen in the spirit of the semantic tags included in
HTML 5, comprising concepts like page, text, image, header,
navigation, container, subheading, link, hero image, and logo.
In the induction, we use the type system to prevent the “page”
label from being merged with any other labels.

Geometric Models
We also constructed collections of geometric models for sev-
eral different classes of objects: alien spaceships, Japanese
castles, sakura trees, and Seussian architecture. Each class
is built with a collection of modular 3D components, which
comprise the labels in our framework [32]. These compo-
nents are assembled into a scene graph, which imposes a tree
topology over them, specifying parent/child relationships and
relative transformations between nodes. In these examples,
we employ the type system to disallow merges between com-
ponents with differing labels, which helps preserve geometric
semantics.



Figure 3. (top) A small sampling of the Web pages in our corpus. (bottom) Three random derivations from the grammar induced over that corpus.

RESULTS
Figure 2 illustrates the algorithm applied to a simple geomet-
ric block space, showing the initial examples, least-general
conforming grammar, set of merges chosen in the search,
the optimal grammar, and some random derivations sampled
from the induced design pattern. In this example, the algo-
rithm is able to generalize beyond the initial exemplar set in
a sensible way.

The last column in the figure shows the most-general con-
forming grammar (MGCG) over the exemplars. This gram-
mar provides a useful benchmark by which to judge the qual-
ity of the induction. The MGCG is obtained in the limit of
the merging process, when all type-compatible symbols have
been merged. Accordingly, the MGCG’s description length
is small and its generalization capacity is large, but the likeli-
hood of the exemplar set is low. In essence, the MGCG makes
a Markov assumption of stationarity that is not well-founded
in design domains. In fact, the MGCG is precisely the gram-
mar that is generated by model synthesis techniques that are
popular in visual computing applications today [28, 6].

By varying the parameter � in the grammar prior, we can
smoothly interpolate along the space of grammars between
the LGCG and the MGCG. Good design patterns will natu-
rally fall somewhere in the middle of these two extremes. Ta-
ble 1 gives statistics for the grammars induced in this paper,
including the description length, likelihood of the exemplar

set under the grammar, and cumulative probability of the two-
hundred most likely designs generated by the grammar. This
latter quantity is useful as a measure of the capacity of the
grammar to generalize beyond the set of exemplars on which
it was trained.

Figure 4 shows typical samples from the MGCG and the opti-
mal grammar induced from a set of spaceship models. Mod-
els produced from the MGCG resemble the exemplar mod-
els only locally; conversely, the models synthesized with our
technique exhibit similar global structure. Figure 5 shows
fifty distinct random samples from a design pattern induced
from six Japanese castle models; Figure 6 shows fifty distinct
random samples from a design pattern induced from eight dif-
ferent sakura tree models.

Figure 7 shows modes from the distribution defined by the
grammar of Seussian architecture, along with their probabil-
ities. While the majority of the produced designs are plau-
sible, these samples also highlight some of the limitations
of our framework (highlighted in red). Because we induce
context-free grammars, it is not possible for these design pat-
terns to reliably learn high-level semantic constraints like “ev-
ery building must have at least one door.” Similarly, since
our models are specified as hierarchies, relationships between
subtrees which are very far apart in the derivation are difficult
to capture: thus, some models have stairways that are not con-
nected to the ground.



Figure 4. Spaceships. (top left) The set of components. (top right) The exemplars. (mid) Random samples from the MGCG: observe how these

designs resemble the exemplars only locally. (bottom) Random samples from the induced design pattern: note the more plausible global structure.

We can also gain insight about the patterns induced by our
technique by inspecting the grammar itself. For instance,
when we examine the grammar we induce over Web pages,
we see one rule that differentiates between two classes of de-
signs. Each consists of a header and a common center struc-
ture comprising either two or four columns; one class has a
hero image, while the other does not. Figure 3 shows a small
portion of our page corpus, as well as a few random deriva-
tions from the learned model of page structures.

User Study
To assess how effectively the presented technique is able to
generalize beyond the set of exemplars, we conducted a cog-
nitive evaluation on Amazon’s Mechanical Turk for three of

the geometric domains. In each experiment, we sampled a
collection of two-hundred designs from our induced gram-
mars and the MGCGs. One-hundred test subjects were then
shown the set of exemplar designs and a single sampled de-
sign below, and asked to answer the question “How similar in
style is this design to the ones above?” on a four-point Likert
scale ranging from “not at all similar” to “very similar.” This
process was repeated until each participant had rated twenty
random designs. Responses were normalized to [0, 1].

Table 2 shows the results from this study. We see higher
average ratings for the designs sampled from our learned
grammars by proportions of between 7% and 21%, all with
p < 0.001 two-tailed using a Mann-Whitney-Wilcoxon test.



Figure 5. Japanese castles. (top left) The set of components. (top right) The exemplar designs. (bottom) Fifty distinct random derivations from

the induced design pattern.

Although this is only a preliminary validation of our ap-
proach, this study seems to indicate that the grammars in-
duced by our technique are better predictors of stylistic simi-
larity than existing model synthesis methods.

DISCUSSION AND FUTURE WORK
Although the method we describe in this paper is just a first
step towards learning design patterns from data in a principled

MGCG Bayes-optimal U
Seuss .69 .76 15288
Sakura .54 .75 8990
Spaceship .58 .67 14777

Table 2. Average ratings for the three domains in our user study, along

with the Mann-Whitney U value.

way, it raises several interesting avenues for future work. In-
ducing patterns for other design domains is one obvious next
step: even for classes of data that lack explicit hierarchical
structure, it may be possible to infer hierarchies as part of the
learning process [36]. Similarly, extending the induction to
scale efficiently to training sets of thousands or millions of ex-
amples is another important direction for future research [40]:
imagine learning a generative model of page designs that is
trained over the entire Web.

Data-Driven Design Tools
Another area ripe for further investigation is leveraging the
induced patterns to build better tools and interaction mecha-
nisms for content producers and designers. We hope that gen-
eral, principled techniques for learning design patterns will
reinvigorate the study of data-driven design in HCI. A few
directions seem particularly promising.



Figure 6. Sakura trees. (top left) The set of components. (top right) The exemplar designs. (bottom) Fifty distinct random derivations from the

induced design pattern.

For one, generative models like the ones learned in this pa-
per provide a simple algorithmic mechanism for producing
design alternatives. Given a small set of representative ex-
amples, techniques like grammar induction can be used to
quickly and easily generate a diverse selection of new designs
that are stylistically similar—but not identical—to the exem-
plars. Furthermore, by varying the weighting parameter � in
the induction process, the degree to which the grammar gen-
eralizes can be controlled. In this manner, it seems likely that
a whole host of tools for automatically populating scenes, gal-
leries, and virtual environments with content could make use
of design pattern learning.

In addition, it has been well established that considering al-
ternatives in the design process itself facilitates discussion,
improves the rate of convergence, and increases the quality
of productions [43, 18, 11]. One can imagine a workflow à
la active learning in which patterns are induced in the back-
ground during design and sampled to suggest new construc-
tions which are then assimilated by users in turn.

Perhaps most intriguing is the potential for exploiting the rich
mathematical structure of generative probabilistic models in
tool-building. In particular,
it seems likely that many
common design tasks can
be formulated as probabilis-
tic inference problems over
a particular design pattern,
and solved with Monte Carlo
methods [42, 45]. For in-
stance, we can write down a
smooth function that scores
page designs based on how
closely they conform to a
particular specification, and
perform MAP estimation via
MCMC to find a page from our learned Web grammar that
has a four-column layout, a single navigation bar with four
navigation elements, a header, and a hero image (see inset).



.048 .024 .0079 .0079 .0034 .0034 .0011.0034
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Figure 7. Seussian architecture. (top left) The set of components. (top right) The exemplar designs. (bottom) Modes from the distribution defined

by the induced grammar, along with their probabilities. Models with questionable structure are highlighted in red.

New Computational Models
One final direction for investigation is learning more pow-
erful computational models for design. Although stochas-
tic context-free grammars provide a useful and compact gen-
erative representation, they are subject to a number of lim-
itations which have led content creators to seek out more
powerful graphical models [30]. For one, SCFGs automat-
ically assign higher probabilities to shorter derivations, an
assumption well-founded neither in natural language nor de-
sign, where model size typically peaks at some intermediate
length. For another, the independence assumptions inherent
in SCFGs prevent them from accurately representing models

which have more general graph (rather than tree) structure,
precluding them from capturing symmetries or other distant
relationships between disjoint subtrees in a derivation. Sim-
ilarly, CFGs are fundamentally discrete representations, and
cannot easily encode continuous variability.

Recent work in probabilistic program induction suggests
ways to overcome some of these limitations [20]: although
the induction problem is more difficult with less structure
a priori, universal probabilistic programming languages
like Church [17] are capable of encoding any computable
function.
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30. Měch, R., and Prusinkiewicz, P. Visual models of plants interacting
with their environment. In Proc. SIGGRAPH, ACM (1996), 397–410.

31. Parish, Y. I. H., and Müller, P. Procedural modeling of cities. In Proc.
SIGGRAPH, ACM (2001), 301–308.

32. Perry, L. Modular level and component design. Game Developer
Magazine (2002).

33. Prusinkiewicz, P., and Lindenmayer, A. The algorithmic beauty of
plants. Springer-Verlag New York, Inc., 1990.

34. Pugliese, M. J., and Cagan, J. Capturing a rebel: modeling the
Harley-Davidson brand through a motorcycle shape grammar. Research
in Engineering Design 13 (2002), 139–156.

35. Shuey, D., Bailey, D., and Morrissey, T. P. PHIGS: a standard, dynamic,
interactive graphics interface. IEEE Comput. Graph. Appl. 6, 9 (Aug
1986), 50–57.

36. Socher, R., Manning, C., and Ng, A. Learning continuous phrase
representations and syntactic parsing with recursive neural networks. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
(2010).

37. Solomonoff, R. J. A formal theory of inductive inference. Information
and Control 7 (1964).
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Metropolis procedural modeling. ACM Trans. Graphics 30, 2 (2010).

43. Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. Getting the right
design and the design right. In Proc. CHI, ACM (2006), 1243–1252.

44. Weitzman, L., and Wittenburg, K. Relational grammars for interactive
design. In IEEE Workshop on Visual Languages (1993), 4–11.

45. Yeh, Y.-T., Yang, L., Watson, M., Goodman, N., and Hanrahan, P.
Synthesizing open worlds with constraints using locally annealed
reversible jump MCMC. In Proc. SIGGRAPH (2012).


