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Patterns with pleasing structure are common in art, video games, and virtual
worlds. We describe a method for synthesizing new patterns of tiles on a
regular grid that are similar in appearance to a set of example patterns. Ex-
emplars are used both to specify valid tile arrangements and to emphasize
multi-tile structures. We model a pattern as a probabilistic graphical model
called a factor graph. Factors represent the hard logical constraints between
tiles, the soft statistical relationships that determine style, and the local de-
pendencies between tiles at neighboring sites. We describe a simple method
for learning factor functions from a small exemplar. We then synthesize new
patterns through a stochastic search method that is inspired by MC-SAT.
Efficient synthesis is challenging because of the combination of hard and soft
constraints. Our synthesis algorithm, called BLOCKSS, scales linearly with
the number of tiles and the hardness of the problem. We use our technique
to model building facades, cities, and decorative patterns.
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1. INTRODUCTION

Historically, many cultures have produced artwork which relies on
the creative repetition of a relatively small palette of motifs. For
instance, in the Native American tradition, pottery, basketry, and
weavings often contain repeated canonical elements. Mosaics, em-
broidery, and other types of visual arts also share this characteristic.
Today, many interesting patterns may be synthesized by rearranging
a small number of discrete blocks in new and pleasing ways. For
instance, architectural elements such as windows and doors are eas-
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ily modeled in this manner. Grid based patterns are a popular way
to represent virtual worlds where tiles can have semantic as well as
visual effects, such as in the tile-based sandbox game Minecraft.

While tiles can be used to make the modeling process more effi-
cient, generating these tile sets and patterns can be time consuming
and expensive. We focus on an example-based technique which
uses existing content to generate novel patterns. An example driven
approach for this type of problem is favorable because the only input
to the method is artist-rendered examples. Thus, an artist’s time can
be spent designing interesting tile sets and a few exemplars from
which a comparatively vast variety of models can be generated.

In this paper, we use examples to generate novel patterns from a
common collection of discrete tiles T; patterns are simply arrange-
ments of these tiles over a regular grid. The grid is modeled as a
collection of random variables X, each representing a tile site ¢
which takes its value from the tile set T. Therefore, a pattern O of
size N tiles is given by:

O={x=2x1,%2,....,xN;%; € T} )

where the array of tiles, x, is referred to as an assignment of tiles:
one tile per grid location. The set of possible output patterns, 3, is
exponentially large; that is, || = |T|™. However, not all O € &
are equally desirable. We would prefer that O be similar in appear-
ance to the input patterns—a notion which is highly subjective,
but for which we attempt to provide an objective basis by taking a
probabilistic view.
Our contributions include the following:

(1) A formulation of the problem of tile-based pattern synthesis
in terms of factor graphs. This formulation allows for the ex-
tension of model synthesis [Merrell 2007] to encompass larger
(i.e., multi-tile) regions, and to encode statistical properties in
addition to the logical constraints necessary for the synthesis of
good tile based patterns.

(2) A method for synthesizing patterns according to constraints
encoded by the factor graph. This synthesis method, which
we call BLOCKSS, is an extension of MC-SAT [Poon and
Domingos 2006]. BLOCKSS uses multi-tile (“block’) updates
to improve performance and better preserve local arrangements
found in the exemplars.

We show how our method can be further refined by the use of
simple user-directed constraints. We give a comparison between
our method and techniques from texture synthesis, demonstrate
the performance characteristics of BLOCKSS, and provide results
generated using a variety of tile sets. These results show how our
algorithm can produce diverse patterns containing novel variations,
even when they are synthesized using the same exemplars and con-
straints.

As outlined in Figure 1, this work can be divided into two parts:
analysis and synthesis. The analysis phase takes as input one or
more example patterns and the tile set from which they are com-
prised. These are used to infer edge-matching rules and multi-tile
features, and to assemble factors representing these relationships.
The synthesis phase combines any user defined constraints with fac-
tors learned during analysis to build a factor graph representation of
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Fig. 1: An algorithm to generate tile-based patterns from factor graphs. Given a set of grid-structured exemplars and constraints, it learns a
corresponding probability distribution in order to synthesize new arrangements.

the probability distribution over the space of possible output patterns.
Then BLOCKSS is used to generate new patterns that resemble the
examples. However, while BLOCKSS is inspired by Markov Chain
Monte Carlo methods, it does not produce samples according to the
distribution.

2. RELATED WORK

Tile-based patterns. Tile-based methods have been widely used
in many areas of computer graphics, such as modeling and anima-
tion [Lagae et al. 2008]. One application of tiling is the use of Wang
tiles for texture synthesis in Cohen et al. [2003]. They use a scanline
algorithm to generate aperiodic patterns by matching abutting edge
colors of Wang tiles. While patterns generated from Wang tiles are
seamless, they cannot capture features encompassing more than two
tiles.

Procedural modeling. Creating novel tile-based patterns is a 2-
dimensional procedural modeling problem. Techniques for perform-
ing procedural modeling tend to fall into two categories: grammar
based methods and example based methods. Grammar based meth-
ods are a highly active area of research, having been deployed in
applications such as the automatic generation of trees [Prusinkiewicz
and Lindenmayer 1996], decorative patterns [Wong et al. 1998] and
buildings [Parish and Miiller 2001; Miiller et al. 2006]. Ways of
combining example based modeling with grammar based methods
have been recently explored; Bokeloh et al. [2010] derive symmetry
rules from input 3D models in order to derive the shape grammar, ad-
dressing the difficulty of formulating effective grammars. We focus
purely on example based synthesis. We believe that the modeling
barrier for casual users is alleviated by exemplar guided synthe-
sis, in which the creation of example patterns facilitates a visual
exploration of the design space.

Model synthesis. Merrell [2007] described a method for the syn-
thesis of new models from an example. Given a set of grid-aligned

model pieces used in the exemplar, the algorithm enumerates all
the immediately adjacent combinations of model pieces observed
in the example model. Merrell’s algorithm requires that all adjacent
combinations of model pieces in the synthesized models also must
be observed in the example model. The problem of synthesis then
becomes one of constraint satisfaction, where the binary relation
encoded by adjacent pieces is the constraint which must be satisfied
during synthesis. Model synthesis is performed using a backtrack-
ing constraint satisfaction algorithm that outputs models satisfying
the constraints. We extend this approach by allowing higher-order
adjacency relations involving more than two tiles, and using these
relationships as soft constraints.

Markov random fields in texture synthesis. Many probabilistic
graphical models have been proposed to represent distributions of
random variables. In computer graphics, one of the most familiar
of these tools is Markov random fields (MRF), which have been
widely applied to the problem of texture synthesis.

There are two types of approaches to texture synthesis using MRF
models: parametric [Zhu et al. 1998] and non-parametric [Efros and
Leung 1999]. These methods capture the statistics of pixels within
a given neighborhood. Parametric methods perform well on tex-
tures that obey Gaussian statistics, while nonparametric methods are
better suited to more complex textures. During synthesis, the pixel
value at a location is conditioned on this neighborhood. This rela-
tionship is modeled by finding similar neighborhoods in the example
texture. Many variations of the basic non-parametric approaches
have been developed to improve the synthesis process, such as incor-
porating vector quantization to high dimensional interpolation [Wei
and Levoy 2000] and coherent neighborhood search [Ashikhmin
2001]. Current methods in texture synthesis are overviewed by Wei
et al. [2009].

Recently, there are many techniques that formulate texture syn-
thesis as an optimization problem. The Graphcut texture synthesis
technique is based on determining the optimal seams between the
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candidate patch and the output image [Kwatra et al. 2003]. Belief
propagation has been commonly used to find the maximum prob-
ability assignment to a MREF. It has been applied in reconstructing
images from a set of non-overlapping image patches [Cho et al.
2010]. In general, optimization is well-suited for producing a single
good pattern. However, because we aim to synthesize tiled patterns
exhibiting variations, we utilize a search method that is inspired by
MC-SAT, a MCMC method, to generate a number of patterns that
resemble example patterns.

While the two domains are closely related, naively applying tex-
ture synthesis algorithms to tile-based patterns often produces un-
desirable results; examples are given in Section 8. The explanation
lies in fundamental differences between tile-based patterns and tex-
tures: pixel values are numeric and tiles are symbolic. The distance
between neighborhoods of pixels can be computed using a simple
Euclidean metric; it is also possible to produce sensible results when
interpolating their values. Although tiles are comprised of pixels,
they behave more like discrete symbols whose neighborhoods are
harder to compare and whose values are much more difficult to
interpolate. The prevention of seams between mismatched tiles is
also of critical importance. Even one invalidly placed tile can create
a pattern whose overall appearance is undesirable. Such constraints
cannot be enforced by existing texture synthesis algorithms.

3. LOCAL RELATIONSHIPS AND FACTOR
GRAPHS

Factor graphs are a class of probabilistic graphical model [Kschis-
chang et al. 2001; Loeliger 2004]. To gain a better intuition of what
is meant by a factor, begin by considering one node in the graphical
model, which represents a single random variable. The dependen-
cies between this random variable and other random variables is
represented by factor nodes ®, which connect to the set of related
random variables via edges E:

As shown, edges appear between each factor ¢; and each random
variable whose value that factor depends on. This set of random
variables is called the scope of ¢; and is denoted by D ;. Factors are
functions that take an assignment d; of D; and return a nonnegative
real number. The neighborhood of a random variable consists of
the random variable nodes that are reachable through one factor
node. For example, the neighborhood of X5 consists of the random
variable nodes X3, X4 (through ¢3), and X (through ¢,). This is
because these nodes are reachable through exactly one factor node.
Individual factors and the edges connecting them to variable sites
form subgraphs which, together, form a factor graph representing
the entire distribution.

Formally, a factor graph is a bipartite graph G = ((®, X), E). It
is composed of a set of factor nodes ® connected to a set of variable
nodes X via edges E. The full distribution over X is given as a
product of these factors, where each factor specifies dependencies
over the variables of its scope.

P =x) = 5 [[ o) @
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where Z is a normalization constant, and d; is the subset of x which
lies within the scope D; of the factor ¢;. Invalid assignments are
easily identified, as their joint probability will be zero. This occurs
when even a single factor returns a zero value.

3.1 Properties of factor graphs

Here we present a few of the important properties of factor graphs.

Logical structures. Factors may be used to represent any logical

predicate. This is accomplished using a binary factor which has
a value 1 for certain variable assignments and 0 otherwise. Each
factor function can represent any logical relationship among its
arguments. The product of multiple factors is the “logical-and” of
the relationships they encode.

Statistical variability. Factors can also capture relationships be-
tween variables that are more complex than logical predicates. For
example, we may want to favor some assignments over others. To
express their relative desirability, one can use factors which return
larger values for preferred variable assignments, and smaller values
for those which are less desirable. Thus, factor graphs can combine
logical and statistical relationships.

Locality. Given the values in its neighborhood, the value of a
single random variable is independent of all other random variables.
There is a natural symmetry between this notion of graph locality
and the notion of spatial locality that is key to graphics applica-
tions such as texture, model, or pattern synthesis. Because many
useful constraints in these domains have spatially local effects, they
are readily represented as factors having graphically local effects.
However, factors are not restricted to expressing spatially local
relationships.

4. PROBLEM OVERVIEW

Our method can be divided into two phases. The goal of the first
phase, analysis, is to construct appropriate factor functions. During
the second phase, synthesis, we construct the factor graph associ-
ated with output patterns with prescribed size, factor functions, and
optional constraints.

Analysis. Input to the analysis phase is the tile set, example
patterns, and the shapes of the factor functions whose values are
to be determined. We build factors by analyzing local information
in the exemplars. In particular, the exemplars provide us with data
that will be used to prevent the synthesis of patterns containing
seams, which occur when tiles whose borders do not match are
placed adjacently. They also provide us with examples of multi-tile
features.

Factor functions are referenced by their scope and their location in
the tile grid. Recall that the scope of a factor is the collection of tile
sites it acts upon. We introduce a new parameter, s, to describe the
shape of this scope: how are the affected tile sites arranged spatially
with respect to one another? Each of these shapes is referenced at
some tile site ¢, an index which can be thought of as an “anchor”
pinning the factor shape to a particular tile site in the synthesized
image (see Figure 2). The various factor shapes s can be thought
of as stencils defining regions of affected tile sites; these shapes
may overlap as they repeat over the image domain at each tile site 3.
When referring to some factor with shape s anchored at tile site 4,
we refer to the factor as ¢, ;, having scope D; ;.
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Fig. 2: Examples of factor shapes (left) anchored at a single tile site indicated
in the factor graph (right).

Synthesis. While patterns may be synthesized directly from the
distribution comprised of these factor functions alone, it is also often
helpful for the user to specify additional constraints. Constrained
synthesis may be accomplished by a process we call zoning. Zoning
is performed in one of two ways. The first restricts tile values to
a subset of T following user-defined areas. During the synthesis
of a facade, this method might be used to specify the shape of the
exterior. The second type of zoning restricts the factor functions in
a user-defined area to those learned from a subset of the exemplars.
In the synthesis of a city pattern, this method might be used to indi-
cate that part of the pattern is synthesized from an urban exemplar
while another part is synthesized from a suburban exemplar. We
can express these constraints by conditioning the factor function
on a zoning variable at each site. The method we use to synthesize
patterns that satisfy the constraints encoded by this factor graph is
introduced in Section 5.2.

5. BUILDING FACTOR FUNCTIONS

Because our probability distribution encodes a combination of hard
and soft constraints, we design factor functions according to the
maximum entropy world model in probabilistic logic [Paskin 2002],
Assignments violating hard constraints have zero probability, while
soft constraints encode preferences. We therefore design two corre-
sponding types of factor functions: the first strictly enforces seam-
lessness between adjacent tiles, and the second favors assignments
observed in the exemplars in order to better capture their appearance.

5.1 Direct adjacency dependencies

To ensure edge matching between tiles, every synthesis using our
method includes two factor shapes: one for vertical pairs of tile sites,
¢2v, and one for horizontal pairs, ¢o 5. The shapes are illustrated
in Figure 2. These logical factors yield a 1 when the tiles adjoin
seamlessly and O when their intersection creates a seam. In other
words, seams are treated as logical inconsistencies.

Points in the support of a distribution given by the product of
logical factors are also the solutions to the constraint satisfiability
problem encoded by edge-matching constraints. Each valid pattern
has a uniform, positive probability; each invalid pattern has zero
probability.

5.2 Higher order dependencies

While ¢oy and ¢op are sufficient to yield seamless patterns, we
would also like our method to give preference to patterns containing
common multi-tile arrangements found in the exemplars. To do this,
we also include factors with scopes containing multiple tile sites.
We call these higher-order factors. There are two issues: selection
of the factor shapes and selection of the factor functions.

e=1.0 e=03 €=0.2

10T
P(Xm) e=0.1
P(X) 5

e =0.05
1 e=0.0
o 5 10 15 20
m

Fig. 3: Plot of the probability ratio of patterns X, satisfying m higher-order
factors to patterns X satisfying zero higher-order factors.

Factor shapes should reflect the shapes of the structures we want
to preserve. In the facade examples in this paper, we use the factor
shapes 4V and 4H shown in Figure 2. The 4V configuration is used
to capture the fact that columns are aligned between floors. The 4H
configuration preserves the horizontal spacing of windows. In other
patterns, different factor shapes may better capture the structure of
the pattern. In city layouts (see Figure 15), square 3x3-tile factors
are used to capture the structure of city blocks and roads.

We use a simple step function for these factor functions. Given
a factor shape s, ¢, is equal to 1 if the assignment has not been
observed in the exemplar, and 1 + ¢, € > 0 if the assignment has
been observed. This parameter controls the relative likelihood of
patterns replicating multi-tile assignments versus patterns that do
not.

Figure 3 demonstrates the effect of € on the relative probability of
patterns satisfying some number of higher order factors compared
with patterns that do not. Let &, denote a pattern that satisfies m
higher-order factors. We see that if ¢ = 0, all valid patterns have
the same probability. If € > 0, the probability of a pattern increases
exponentially with the number of higher-order factors satisfied. This
effect is more pronounced as € increases. As € — 0o, higher-order
factors become hard constraints. The examples in this paper are
generated using e = 0.1. We find this gives a reasonable balance
between producing novel variations and preserving the appearance
of the exemplars. The trade-offs between quality and performance
for various values of € are further discussed in Section 8.

Note that, for each output pattern size, it is possible to model
the product of factor functions as an exponential family distribution
and to then learn the corresponding parameters using maximum
likelihood. However, in the use cases we consider the number of
exemplars is insufficient for the application of such methods. We
leave the problem of learning factor functions from sparse data to
future work.

6. SYNTHESIS METHOD — BLOCKSS

Given a tile set, exemplars, factor shapes, and zoning constraints
as input, we can derive the factor graph associated with the output
patterns. The probability distribution encoded by this factor graph is
given by:

P(X =x) = %Hﬂm,i(ds,i). 3)

Our synthesis method, which we call BLOCKSS, is inspired by a
product slice sampler called MC-SAT. BLOCKSS interleaves two
steps:
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Fig. 4: Stages of slice sampling. (a) The starting state, zo. (b) An auxiliary
sample, ug, is taken uniformly from [0, ¢(z0)]. (c) The support of this slice
is shown in dark gray. (d) The next state, x1, is chosen from this support.
Note the algorithm is able to move between disconnected regions of support.

(1) Form slices by sampling auxiliary variables based on the current
state.

(2) Generate the next state, in which each factor score exceeds the
corresponding auxiliary variable value sampled in (1).

When a uniform sampler is used to find the set of solutions satis-
fying slice thresholds (defined below), the Markov chain generated
by MC-SAT will satisty ergodicity and the detailed balance condi-
tion [Poon and Domingos 2006]. However, we found that implement-
ing a perfectly uniform sampler is both too costly and unnecessary
for generating good quality patterns. Instead, we employ a blocking
scheme in step (2) as an efficient, but biased, substitute. Therefore,
BLOCKSS does not exactly sample from the distribution shown in
Eq (3). Before giving a detailed description of our synthesis method,
we begin with an overview of univariate slice sampling.

6.1 Slice Sampling

In slice sampling [Neal 2000], the space X is augmented with an
additional auxiliary variable, U. The resulting joint distribution
is then over (X, U). Provided the auxiliary variable is formulated
properly, the marginal distribution of X in P(X, U) is the original
distribution of interest, P(X). Typically, the MCMC transition func-
tions in slice sampling consist of Gibbs-style updates alternating
between sampling from P(X|U) and from P(U|X). The benefit is
that the scale of changes made in X when sampling from P(X|U)
adapts to the distribution.

In Figure 4, we visualize how slice sampling works for one aux-
iliary variable. To sample u given some zy € X, begin by taking
a sample ug uniformly from [0, ¢(z)]. This defines a threshold
for the corresponding factor, ¢(x). Next, obtain a new sample
x1 given ug. This is done by sampling uniformly from the set
A = {z : ¢(x) > up}. This subset of X is known as the slice.
As shown in Figure 4 (c), a low threshold will increase | A|, because
there will be many assignments whose scores exceed the threshold.
Conversely, high threshold values make |A| small.

Slice samplers can be specialized to handle the distribution of
a product of factors, i.e., P(X) o []j_; ¢;(x), with multiple
auxiliary variables, {u1,us,...u,}, one for each factor. This is
called the product slice sampler [Edwards and Sokal 1988; Mira
and Tierney 1997]. As in the one-dimensional case, each u; defines
a threshold for its corresponding factor and is uniformly sampled.

Synthesis of Tiled Patterns using Factor Graphs . 5
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Fig. 5: Tiled examples (top) demonstrate the underlying shape of each block
(middle). The reference tile is indicated in white. Blocks are grouped into
schemes B1, B2, ... B6 (bottom).

6.2 Auxiliary Variable Sampling in BLOCKSS

As in product slice sampling, BLOCKSS employs one auxiliary
variable u; for each factor ¢;. At every iteration, we sample the
slice threshold for each wu; uniformly from O to the current score
of its corresponding factor. In our setting of tiled patterns, the slice
corresponds to valid tilings whose per-factor likelihood scores are
each greater than the value of the corresponding auxiliary variable
sample (Algorithm 1).

6.3 Blocked SampleSAT in BLOCKSS

To draw x € A, we employ a state space search algorithm inspired
by SampleSAT [Wei et al. 2004], a hybrid method for the approxi-
mate uniform sampling of solutions to SAT problems. We extend the
SampleSAT framework to update multiple random variables at each
step (blocked updates). We call this BlockSampleSAT (Algorithm
2). Similar to each step of SampleSAT, it randomly selects WalkSAT
and simulated annealing with probability p,,q1x and 1 — pyyqaik, and
follows the use of a fixed temperature 7" in the simulated annealing
step. The differences lie in the blocked updates.

Each blocked update changes a set of tiles relative to a reference
site 4. First, the shape of this block is chosen uniformly at random
from a predefined set. This defines the block as a set of tile sites
in the neighborhood of site ¢. We then update all random variables
in the block around site ¢ by copying in a block of the same shape
from the exemplars, also chosen uniformly at random. This restricts
the assignments of our replacement blocks to those which are found
in the exemplars. Similar to the factor shapes discussed in section
4, block shapes contain a reference tile used to anchor them consis-
tently relative to each reference site. Example blocks and the block
shapes used in our updating scheme are shown in Figure 5.

Efficiency. To see why updating more than one tile at a time in
SampleSAT is desirable, we first note a problem encountered when
performing “single-site” updates, in which only the tile found at
a single location is changed. These updates often cause synthesis
to become trapped in local optima, where no single-site change
improves the number of factors whose current configurations exceed
their slice thresholds.

Blocked updates lessen this effect. Recall that in our formulation,

a factor will have a score exceeding the slice threshold if its configu-
ration comes from the exemplar, as such configurations maximize its
score. Because each blocked update directly transfers configurations
from the exemplar, factors with scopes inside the updated block will
score above the slice threshold. This guarantees movement through
the state space.
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Algorithm 1 Pattern synthesis algorithm BlockSS.

Algorithm 2 BlockSampleSAT(G, u, B, O").

Input: factor graph G, replacement blocks B, tile set T.
Output: samples 01,05 ...Og.

Initialize pattern Oy with tiles uniformly sampled from T.
forn:=0to R —1do

for ¢; in ® do

u; U0, ¢;(d;)]

end for

O41 < BlockSampleSAT(G, u, B, O,,)
end for
return O1,0,,...,0r

Replicating statistical relationships. Our formulation has two
key properties: (1) the same factor function repeats over the pattern;
(2) each factor function takes on two values — {0, 1} or {1, 1 + €}.
This allows us to use the same factor functions to output patterns of
different sizes.

However, overlapping factor functions with limited local scope
cannot prevent the synthesis of patterns with longer range, unde-
sirable tile arrangements. For instance, consider a facade exemplar
containing a vertical arrangement of 4 tiles into a column feature. If
these tile relationships were expressed using only 2V factors, syn-
thesis might produce undesirable elongated columns of 6 or more
tiles. However, because each 2V pair of tiles was validly placed,
the probability of this less desirable pattern would be the same as a
pattern containing 4 tile columns whose appearance more closely
matched the exemplar.

In general, no matter the size of the factors, exemplars may con-
tain features which extend beyond their local neighborhood. This
issue is mitigated by performing randomized blocked updates, which
help simulate exemplar appearance without drastically increasing
the complexity of the problem. By duplicating higher-order struc-
tures from the exemplar (such as vertical arrangements of 4 or more
tiles), the synthesized patterns might contain, for example, more
4-tile columns and fewer “extra long” columns. In general, block-
ing exploits the fact that locality in the synthesized pattern ought
to correspond to locality in the exemplars; this is in accordance
with previous work in other synthesis algorithms which attempt to
preserve locality [Wei et al. 2009].

Blocking does not obviate the usefulness of higher-order factors.
With only 2H/2V factors, the candidate replacement block needs
only to satisfy constraints between directly adjacent tiles. When
higher-order factors are used, the candidate block will need to sat-
isfy constraints with scopes further into the pattern. Through this
mechanism, higher-order factors introduce correlations between can-
didate blocks at longer ranges. This has the effect of making the
synthesized patterns more consistently replicate the appearance of
the exemplars.

In short, blocked updates improve the efficiency and quality of
synthesis by taking advantage of the spatial locality of our applica-
tion domain. Pseudocode for BLOCKSS is provided in Algorithms
1 and 2. Patterns synthesized in this paper all used 7' = 0.25,
Pwaik = 0.6 and py;;, = 0.1 where T is the temperature used in
the simulated annealing step, P and py;;;, are the probabilities
of performing WalkSAT steps and random flips in the BlockSample-
SAT algorithm.

7. QUANTIFYING EXEMPLAR APPEARANCE

When evaluating the quality of synthesized patterns, we will use
histograms defined over local tile configurations in the exemplars.

Input: factor graph G, auxiliary variables u, replacement
blocks B, current pattern O', maximum iteration N, sampleSAT

parameters(Dyaiks P fiips 1)-
Output: pattern O.

O+ 0
fort:=1to N do
Uwalk ™~ I/I[O, 1}’
if Ualk < Pwalk then
Pick a currently unsatisfied factor ¢; anchored at site 7;
Ufiip ™~ Z/{[Ov 1]7
if Uslip < Pflip then
Update O with a random replacement block b € B an-
chored at site ¢;
else
Randomly select a replacement block type that will cover
the scope of ¢;;
Update O with the assignment to that block type that
maximizes the number of satisfied slice thresholds;
end if
else
Let c,;4 be the number of satisfied slice thresholds of O;
Propose a new assignment O* by randomly pick a site ¢,
update with a replacement block b € B anchored at site ¢;
Let ¢,,¢, be the number of satisfied slice thresholds of O*;
Ugccept ™~ u[07 1}’
if Ugccepr < min(1, exp((cpew —
O+ 0O
end if
end if
if there are no remaining unsatisfied factors then
return O;
end if
end for
return O;

Cold)/T)) then

Let X5 denote the set of all possible tile assignments to shape s, with
particular tile configurations c; € 3. Then the histogram f(cs) is
calculated as
F(cs)
Cs) == 11 4

D S (% @
where F'(c;) is the number of observations of ¢ in the exemplars.
We abbreviate these functions as fs and F, respectively.

Figure 6 illustrates Fyy and F5y for a simple facade. Here, we
can see that histograms of tile configurations are able to encode
informative design metrics; for instance, the solid windowsill occurs
half as often as the fenced windowsill (see the top two entries for
Fopm).

Because desirable synthesized patterns will encode the same de-
sign metrics as the exemplars from which they are formed, their
histograms should be analogous. We will quantify the similarity
between two histograms using Kullback-Leibler (KL) divergence,
which has also been used in the visual domain to compare im-
ages [Goldberger et al. 2003]. A small KL divergence between the
histograms of exemplar and synthesized patterns will indicate a
good replication of local tile configurations.

Pitfalls of using histograms as factor functions. Note that these
histograms f, cannot be used as factor functions ¢; ;. This is be-
cause histograms represent global statistics over the entire pattern,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



inznsnznza=n:

LTI LT

LTTTTT
=z

Fon
0 5 10 1520

Fig. 6: Histogram of local configurations Fsy and Fapr.

whereas factor functions express local probabilities. To illustrate
this point of why local probabilities and global statistics are not
equal, suppose we choose ¢, ; = fs. Then, in our formulation, the
probability density of a given pattern would be proportional to the
product of repeated factor functions, [ ], f,. The product raises the
global statistics to a power that depends on the size of the pattern,
incorrectly exaggerating the arrangement of highest local proba-
bility. In general, the global frequencies will not be equal to the
local probabilities used to generate the pattern [Koller and Friedman
2009].

8. RESULTS
We judge the quality of synthesized patterns by two criteria:

(1) Seamless tile placement

(2) Preservation of higher-order statistics from the exemplars.

Patterns adhering to these constraints will contain global features
such as sensible roofs and floor levels, as well as local multi-tile
structures such as doors, windows, and other stylistic elements.
Other methods are not able to reliably achieve these properties. To
account for burn-in, we discard the first five patterns synthesized in
each experiment.

8.1 Comparisons with other synthesis algorithms

Texture synthesis. We use tile-based architectural facades to
compare the quality and performance of our results with previous
synthesis algorithms. The tiles and facades used here originate from
a book of architectural designs [Campbell 2006]. An important ques-
tion is whether texture synthesis algorithms adapted to operate on
tiles can also synthesize seamless patterns. In Figure 7, we show that
they cannot. The exemplar is the same as in Figure 8. Traditionally,
texture synthesis employs algorithms similar to those found in [Wei
and Levoy 2000], in which a causal MRF neighborhood is used to

Synthesis of Tiled Patterns using Factor Graphs . 7

=

Image Quilting

Fig. 7: Comparison with texture synthesis. Neither neighborhood-based
nor image quilting methods synthesize logically consistent results,
Neighborhood-based methods were implemented with a Hamming distance
metric and cross-shaped non-causal and causal neighborhoods. The exemplar
used for these patterns is shown in Figure 8.

generate the result in scanline order. The algorithm determines the
final value of each site as a function of its local neighborhood, which
in turn consists of previously assigned values. This approach can
create neighborhoods in which it is impossible to place the next tile
without violating logical constraints. Non-scanline neighborhood-
based update methods may also fail to produce coherent solutions
for the same reason. These patterns would all have probability zero
under our formulation. Another alternative is a patch-based texture
synthesis method called Image Quilting [Efros and Freeman 2001].
We see that results from this technique also exhibit seams and dis-
continuities. Moreover, it is not clear how to recover discrete tiles
from these results, as the method operates on individual pixels.

Model synthesis. We compare the effectiveness of BLOCKSS
using 2H/2V and 4H/4V factors with the model synthesis algorithm
of Merrell [2007], which formulates the task as a logical constraint
satisfaction problem (CSP). Figure 8 shows the qualitative difference
between the two methods using the facade tile set. Unlike methods
from texture synthesis, model synthesis produces seamless patterns.
However, particularly when unconstrained (see Figure 8a and 8c),
model synthesis often yields results containing undesirable artifacts
such as repeated windows and elongated doors which were not
present in the exemplar. Fixing the values of a few tile sites improves
the performance of model synthesis. In Figure 8b and 8d, we show
patterns produced by both methods when the floor and top left tiles
are fixed. While the results for model synthesis are improved, they
still cannot capture longer-range features.

Pure constraint satisfaction. The use of CSP solvers for model
synthesis can be further developed. We show that with 2H/2V con-
straints, we can synthesize higher quality patterns than those pro-
duced by an off-the-shelf CSP solver. Furthermore, we demonstrate
that including multi-tile factor functions improves quality as com-
pared to only including 2H/2V factor functions.

We synthesized 75 L-shaped facades using three methods:

(1) A CSP solver with ¢o 5 and ¢oy as hard constraints.
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Exemplar

Model synthesis

BlockSS

Fig. 8: Model synthesis (center) produces patterns that are seamless but contain strange multi-tile features. Our method (right) shows improved
results. Fixing floor and top left tiles as in (b) and (d) improves the quality of results for both methods.

wE=w=vw

(c) CSP
KL div =0.907

score:

(d) Our algorithm
2H/2V
KL div =0.651

score:

(a) Exemplars

(e) Our algorithm

2H/2V + 4H/4V
KL div =0.528
score: 93.40

(b) Zoning blocks

88.35 96.7 87.30

~ ] (f) Replacement I:I H I:. E ? I:I u : i i '

Fig. 9: Comparison with CSP. (a) Input exemplars. (b) Zoning constraints. (c) Results obtained using a general-purpose CSP solver with the
2H/2V logical factors as constraints. (d) Our algorithm with the same logical factors. (¢) Our method with additional 4H/4V factors as soft
constraints. (f) Replacement blocks used in (d) and (e). KL-divergence is calculated for a set of 75 results over fyz and f4y; the results here
are representative samples. The score below each facade is the unnormalized log probability under both hard 2H/2V and soft 4H/4V factors.
The tiles were extracted from the book “Vitruvius Britannicus: The Classic of Eighteenth- Century British Architecture” (©Dover Publications.

(2) BLOCKSS on the distribution with factors ¢ and ¢oy as hard
constraints.

(3) BLOCKSS on the distribution with factors ¢og, ¢2y (hard
constraints), ¢4z, and ¢4y (soft constraints with e = 0.1).

The effect of the choice of € is outlined in Section 8.3. We found
e = 0.1 to represent a tradeoff between quality and speed suitable
for a semi-interactive tool, being able to consistently produce a
pattern of reasonable quality every few seconds. The CSP solver

used is a general-purpose solver called MINION [Gent et al. 2006].

In order to achieve a higher level of pattern variation, the solver was

set to randomize the ordering of decision variables before each run.

Zoning constraints were required to control the exterior shape of the
synthesized facades.

In Figure 9, we selected representative results synthesized by
each method. As expected, the overall appearance of the CSP results
is similar to that of Merrell in Figure 8, and does not match that
of the exemplars. In contrast, the results of BLOCKSS replicated
the appearance of the exemplars while also introducing some novel
variations. We also applied CSP with 4H/4V as hard constraints.
However, we found that there was no satisfying assignment for the
L-shaped facade under these constraints. The treatment of higher-
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Fig. 10: The average and standard deviation of unnormalized log probability
of samples over time using BLOCKSS. The plot was made by running the
algorithm 115 times on the L-shaped facade with 2H/2V and 4H/4V factors.

order factors as soft constraints is what allows our method to avoid
this pitfall.

Quantitative measure of style preservation. We would like to
quantify both how well the output patterns match the exemplars
statistically and the effect of including additional soft, higher-order
constraints. To do this, we took the KL divergence of the output
patterns with respect to the fyz and f,y distributions for the input
facades according to Equation 4. Along with the KL divergence,
we also included the value of the unnormalized log probability
composed of both hard 2H/2V constraints and soft 4H/4V con-
straints according to the schemes outlined in sections 5.1 and 5.2.
These values are included in Figure 9. The CSP-based results had
a KL-divergence of 0.907. Our algorithm using just 2H/2V factors
improved the KL-divergence to 0.651. This quantitative change is
reflected qualitatively; the exemplar facade’s appearance is better
captured. Our algorithm run with additional 4H/4V higher-order
factors attained the lowest KL-divergence (0.528), and produced
facades that best captured the appearance of the exemplars. Finally,
we see that the log probability of patterns synthesized with the
higher-order factors is higher than those synthesized using only hard
constraints. In Figure 10, we demonstrate how BLOCKSS mixes by
running it 115 times on the distribution used in Figure 9(e). We plot
the average and standard deviation of unnormalized log probability
at each point in time, confirming that 5 samples are sufficient for
burn-in.

8.2 Comparison with single-site Metropolis-Hastings

‘We compare the performance of BLOCKSS to single-site Metropolis-
Hastings [Hastings 1970], a commonly used Markov Chain Monte
Carlo technique. We synthesized 10 rectangular facades of vari-
ous sizes from the exemplars shown in Figure 9. The probability
distribution was composed of 2H/2V factors only. We measured
the average time taken to synthesize a facade in the support of the
distribution. Because single-site MH requires a positive probability
distribution to converge, we assigned a small probability of 108
to invalid configurations; the results are shown in Figure 11. Our
method achieves a speedup of over 90x for small facades (100 tiles).
As the facade size increases, we achieve greater speedups (up to
7000x for the facade of 900 tiles). In the case of the 1600 tile facade,
single-site MH does not converge in a reasonable amount of time,
while our algorithm produces a result in 2 minutes. All timings were
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Fig. 11: Performance comparison of BLOCKSS versus single-sitt MH. MH
scales poorly with pattern size.

obtained using an Intel Xeon desktop clocked at 2.66 GHz with
8GB RAM.

The scalability of our algorithm determines its range of appli-
cability. We summarize the effect of three variables that critically
affect the performance of our algorithm: blocked updates, pattern
size, and constraint hardness.

Gains from blocked updates. We measured the effect of block-
ing on performance by synthesizing 50 facades and calculating the
average time to generate a facade in the support of the distribution
using different sets of replacement blocks, which are shown in Fig-
ure 5. The distribution was encoded using 2H/2V logical factors.
This test was repeated using various zoning constraints on the ex-
terior facade shape. Results are given in Figure 12. In most cases,
using larger blocks speeds up the sampling process. However, we
also see that occasionally the logical constraints encoded by the
zoning are easily satisfied even using a single-site block updating
scheme, in which case blocking provides a smaller benefit (see the
right-most plot in Figure 12).

Scaling with pattern size. Tiles are a convenient, effective, and
popular way to represent large virtual worlds. We created a city tile
set in a style similar to that found in “Sim City” type games. We
synthesized city layouts of increasing size, and measured the time
taken to produce a city layout in the support of that distribution. A 4-
way crossroad was fixed at regular intervals of 20 tiles as constraints,
acting as the seed for a road network. The results are given in
Figure 13 (a). We find the runtime to increase linearly with respect
to the size of the city for all of the factor schemes tested. For a
distribution composed of 2H/2V factors, the largest city (170x170)
takes about 5 minutes. On the other hand, it took over 2 hours for
single-site MH to synthesize even a small 20x20 city under the
same constraints. When we add higher-order factors (2x2, 4x4),
performance degrades by a constant factor.

8.3 Performance of BLOCKSS

Scaling with constraint hardness. The hardness of the con-
straints encoded by one exemplar can vary greatly. Recall that arbi-
trary boolean satisfiability problems (which are NP-complete) can
be encoded by 2H/2V constraints [Merrell 2007]. Here, we char-
acterize how performance is affected by intrinsic hardness. One
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Fig. 12: Time to generate a single pattern under the blocking schemes
shown in Figure 5 (average time taken over 50 patters, sized 20x20 tiles.)
Higher-order blocking schemes increase performance; this effect is relatively
insensitive to facade shape.

€ KL-div  avg. time (sec)  std. dev. time (sec)
0.05 0.587 63.15 116.71
0.10 0.481 77.38 139.06
0.20  0.449 471.93 1458.80
0.30  0.453 236.52 378.42
040 0.389 419.04 441.47
0.50 0.358 1444.75 3004.11
0.60  0.301 452.94 935.73

Table I. : Trade-offs between quality and performance for various e values.

way to quantify hardness is to consider the range of deterministic
constraints encoded by the exemplars.

Consider that for city layouts, placing any tile in the layout only
determines a local set of tiles constant in size. This is true for a city
of any size. In contrast, for our facade exemplars, a single floor tile
will restrict all other tiles in that row. Consequently, as the width of a
synthesized facade increases, so does the number of tiles spanned by
this restriction. To evaluate the effect of hardness on performance,
we synthesized square facades of increasing size. Results plotting
synthesis time as a function of pattern width are given in Figure 13
(b). Unlike the results shown for the city patterns in Figure 13 (a), we
can see that for facade patterns the hardness increases significantly
with width. This is reflected in the increased runtime.

Effect of € on quality and performance. We ran the L-shaped
facade with zoning constraints as in Figure 9(b) using 2H/2V (hard
factors) and 4H/4V (soft factors) on different € values. For each
value of € we synthesized 40 patterns. To account for burn-in, we
discard the first four patterns generated. In Table I, we relate € to the
KL-divergence and average time to generate a new pattern. We find
that increasing e increases quality (lower KL-divergence).

In general, larger € increases the average and standard deviation
of running time. However, the relation between € and running time
may not be strictly monotonic. In particular, we see that ¢ = 0.6
results in shorter runtime than e = 0.5. While counterintuitive, this
can be explained by how e affects the state-space landscape and in
turn the behavior of our algorithm. Because our algorithm depends
on stochastic local search (SampleSAT) to find solutions that satisfy
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Fig. 13: (a) Time to produce a square city of increasing size; factor shapes are
indicated in the legend. Performance scales linearly with area. (b) Hardness
increases with facade width; this degrades performance significantly as
compared to increasing area alone. Fixing one floor tile determines an entire
row of the facade. As a consequence, the hardness, as the maximum size of
the deterministic effects, is on the order of the width of the facade.

the slice threshold, it is possible for it to become trapped in local
optima. Although higher e decreases the number of solutions (as it
“hardens” the soft constraints), it may simultaneously remove local
optima, actually making the problem easier [ Yokoo 1997].

8.4 Controlling and mixing style

Factors learned from an exemplar characterize its style. Combining
factors from different exemplars allows the user to create hybrid
styles. We demonstrate the composition of styles in Figure 14 using
a decorative tile set taken from a catalog of Victorian frames and
borders [Son and Co. 1976]. We use zoning to control the decora-
tive border. One zone represents interior white space, another zone
represents the outer border which must contain connecting tiles, and
a transition zone between these allows for either blank or decorative
tiles. Symmetry was achieved by synthesizing half of the frame and
mirroring the result.

Figure 15 shows the ability of our algorithm to mix styles from
different city layouts. Using the city tile set, we created two exem-
plars capturing different styles: suburban and urban. The urban city
layout had a grid-like road structure and contained taller buildings.
The suburban city layout had less structured roadways and con-
tained mostly houses. We synthesized three layouts: one using the
suburban exemplar, one using the urban exemplar, and one where
zoning constraints were used to combine the two styles. The left
portion of the city was zoned using the factors learned from the
urban exemplar, and the right was zoned using the factors from the
suburban exemplar. In all cases, the distribution was encoded using
2H/2V factors (hard) and square 3x3-tile factors (soft).
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Fig. 14: Left: Exemplars. Middle, Right: Decorative patterns synthesized from these exemplars. Symmetry achieved through mirroring. For all
the synthesized decorative patterns, factors are 2H/2V logical factors. Replacement blocks are the same as the ones shown in Figure 9 (e).
The tiles were extracted from the book “Victorian Frames, Borders and Cuts: From the 1882 Type Catalog of George Bruces Son and Co.”

(©Dover Publications.

9. DISCUSSION AND FUTURE WORK

We have shown that a limited set of exemplars can be used to
synthesize tile-based patterns that not only capture overall exemplar
appearance but are guaranteed to do so without creating seams. We
encode both hard and soft constraints using factor graphs.

As mentioned in Section 2, factor graphs and Markov random
fields are two types of probabilistic graphical models. They can both
be used to represent the same joint probability distribution. However,
one factorization of the joint distribution might be better than the
other. In our case, factor functions naturally represent constraints
between tiles found in patterns such as facades and cityscapes.

Currently the higher-order factor shapes and weight parameter
€ are determined manually. Automatically learning more sophisti-
cated shapes and better-tuned weight parameters is a natural next

step to better approximating the exemplar distribution and more
faithfully capturing exemplar appearance. There is a large body
of work on automatically learning the structure and parameters of
graphical models [Koller and Friedman 2009].

There are many interesting avenues for exploring the use of factor
graphs in pattern synthesis. One limitation of our method is its
reliance on patterns which lie on a regular grid. However, this is
not a restriction imposed by the factor graph representation: the
structure of the factor graph depends only on the connectivity of
abstract elements or symbols, and not on the appearance of tiles.
Therefore, the factor graph representation is not limited to 2D grids;
it could be extended to 3D grids or other topologies. Factor graphs
can also be used to capture other types of semantic relationships,
such as requiring all roads in a city be a minimum distance apart.
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While these future directions pertain to pattern synthesis, factor
graphs are not limited to this problem area. They provide a uni-
fied framework for the representation of probabilistic distributions
by explicitly encoding dependencies using factors. The flexibility
of this method makes it applicable to many areas of graphics; lo-
cal dependencies between tiles easily map to those between more
general spatial elements in images or models. For example, factor
graphs could encode interior design principles for scene modeling
applications. Similarly, factors could be used to capture the relation-
ships between keyframes in animations or other types of temporal
sequences in simulations.
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Fig. 15: (a) Exemplars. (b) Synthesis from urban exemplar. (c) Synthesis from suburban exemplar. (d) Synthesis using factors from both

exemplars. Zoning was used to create an urban area (lower left) and a suburban area (upper right). For all the synthesized city patterns, factors
are 2H/2V logical factors and square 3x3 higher-order factors. Replacement blocks are the same as the ones shown in Figure 9 (e).



